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We present a real-time diagrammatic formalism to study adiabatic pumping in chains of tunnel-coupled
metallic islands. This approach is based on an expansion to linear order in the frequency of the time-dependent
parameters and on a systematic perturbation expansion in the tunnel-coupling strength. We apply our formal-
ism to single-island and double-island systems. In the single-island setup, we find that the first-order contri-
bution in the tunnel-coupling strength is purely due to the renormalization of the charging-energy gap. In the
double-island system, we investigate the transition between weak and strong pumping.
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I. INTRODUCTION

The most common method to drive a current through a
conductor is by applying a voltage. In nanostructures, due to
the ease with which parameters can be tuned, another possi-
bility opens up: pumping. In an electron pump a dc current
can be generated in a nanoscale conductor, even at zero-bias
voltage, by periodically changing some of its properties in
time. If the time dependence of the parameters is slow com-
pared to the internal time scales of the system, such as the
dwell time of carriers, pumping is adiabatic. In this case, the
pumped charge does not depend on the detailed time evolu-
tion of the pumping cycle but only on its area. Most of the
theoretical efforts on pumping have been addressed to sys-
tems where the electron-electron interaction is weak and can,
therefore, be neglected or treated in a mean-field
approach.1–6 For these weakly interacting nanoscale conduc-
tors, a well-established formalism for pumping exists based
on the dynamical-scattering approach to mesoscopic trans-
port.1,7 Recently, several works have investigated pumping
through interacting systems.8–18 Most of these works have
focused on few-electron quantum dots10,12,13,15–18 since these
systems are the prototype for nanostructures with strong in-
teraction effects. An open question regards how the pumping
characteristics of an interacting quantum dot depends on the
dot’s single-particle spectrum. In order to address this prob-
lem, we have decided to study a quantum dot with a dense
spectrum, i.e., with vanishing level spacing. Due to its finite
density of states, such a quantum dot is referred to as a
metallic island. Indeed, pumping in systems of metallic is-
lands has been investigated experimentally already in the
early 1990s.19,20 Pothier et al.20 realized a single-electron
pump in a setup with two tunnel-coupled metallic islands in
series. Pumping was obtained by changing in time the gate
voltages of the two islands. The pumping cycle was chosen
to enclose a degeneracy point, where three charge states of
the double-island system are degenerate. This resulted in
pumping of exactly one electron per cycle. To describe this
experiment, it was assumed that the system relaxes always to
the ground state and that this transition occurs via first-order
tunneling. Although this theoretical explanation is perfectly
suited to describe the pumping cycle of Ref. 20, it would fail
in describing weak pumping or pumping cycles nonencir-
cling a degeneracy point.

More experiments on charge pumping through nanostruc-
tures were performed on metallic multijunction systems,21

double quantum dots in InAs quantum wires,22 or making
use of surface acoustic waves.23–25 Also spin pumping
through a quantum dot was reported.26

In the present paper, we develop a diagrammatic real-time
approach to adiabatic pumping in systems consisting of me-
tallic islands. To this aim, we follow the lines of Ref. 15,
where adiabatic pumping through a single-level quantum dot
was considered. Our approach relies on a systematic pertur-
bative expansion in the tunnel-coupling strengths and there-
fore is restricted to weak tunnel coupling. In particular, it is
not suitable to study the very-low-temperature regime, where
high-order tunneling processes become relevant. However, it
treats the Coulomb interaction on the island exactly, allowing
us to investigate effects due to strong interaction.

First, we apply our formalism to a single-island system
consisting of one metallic island with Coulomb interaction,
tunnel coupled to two noninteracting leads. We compute the
pumped charge up to first order in the tunnel-coupling
strength for any pair of pumping parameters chosen among
the charging-energy gap of the system and the left and the
right tunnel-coupling strengths. As a result, we find that the
contribution in first order is due solely to the renormalization
of the charging-energy gap. For the case of pumping with the
two tunnel-coupling strengths, this term becomes the domi-
nant one. Furthermore, we consider pumping with the
charging-energy gaps in a more complex system consisting
of two tunnel-coupled metallic islands called the double-
island system. We calculate the pumped charge through this
system in lowest order in the tunnel-coupling strength and
investigate the issue of pumped-charge quantization. With
our technique we are able to describe the transition from
weak to strong pumping, finding charge quantization for
strong pumping.

This paper is structured as follows. In Sec. II we present
the model. The technique to compute the pumped current is
introduced in Sec. III. The results for single-island and
double-island systems are presented in Secs. IV and V, re-
spectively. The conclusions are given in Sec. VI. Details on
the calculation of the diagrams can be found in Appendixes
A and B. To keep all formulas transparent we set �=1
throughout the paper.
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II. MODEL

We consider a chain of M tunnel-coupled metallic islands.
The leftmost and rightmost islands are tunnel coupled to me-
tallic leads. The different metallic regions are labeled by the
index r, where r=0 and r=M +1 correspond to the noninter-
acting metallic leads and r=1, . . . ,M to the metallic islands.
The metallic islands, for typical experimental realizations,
have a dense single-particle spectrum and can be treated as
equilibrium reservoirs of fermionic degrees of freedom, de-
scribed by a Fermi function. Each island is capacitively
coupled to a gate voltage, which can be used as a pumping
parameter. The state of the chain is described by the number
of excess charges Nr on each island, ���= �N1 , . . . ,NM�. The
Hamiltonian of the system is H=H0+Htunn. The operator H0
describes the system in the absence of tunnel coupling

H0 = �
r=0

M+1

�
k,n

�knrcknr
† cknr + Hch, �1�

where �knr are the single-particle energies, labeled by k and
by the transverse-channel index n=1, . . . ,Nchann. The spin
degree of freedom is included in the sum over transverse
channels. In the following, we will consider the many-
channel case, Nchann�1. The Coulomb interaction is taken
into account by Hch, which describes the electrostatic energy
of a given charge state ���.27 This charging energy depends
on the gate voltages applied to each single island. The tunnel
coupling is described by the tunneling Hamiltonian

Htunn = �
r=0

M

�
k,p,n

�Vr�t�cknr
† cpnr+1e−i��r+1−�r� + H.c.� �2�

with �0=�M+1�0. For simplicity in Eq. �2� we have as-
sumed that the tunnel-matrix elements Vr for tunneling
through barrier r do not depend on the quantum numbers k
and p or on the transverse-channel index n. Notice that the
tunneling Hamiltonian Eq. �2� conserves the transverse-
channel index. In Eq. �2� we have explicitly indicated that
the tunnel-matrix elements can be time dependent. The op-
erator �r is the canonical conjugate of the number operator

N̂r for the excess charges on island r, i.e., ��r , N̂r�= i. There-
fore, e�i�r are simply ladder operators for the charge on is-
land r. Finally, we characterize the junction r between the
two consecutive islands r and r+1 by the tunnel-coupling
strength

�0
r�t� =

Rk

4�2Rr�t�
= �

n

Nr
n�0�Nr+1

n �0�Vr�t�Vr
��t� , �3�

where Rk=h /e2 is the quantum resistance, Rr is the tunnel
resistance of junction, and Nr

n�0� and Nr+1
n �0� the densities of

states at the Fermi energy for channel n of leads or islands r
and r+1, respectively. We define also the two-time coupling
strength as �0

r�t , t��=�nNr
n�0�Nr+1

n �0�Vr�t�Vr
��t��.

III. FORMALISM

We are interested in the dynamics of the excess charge on
each island and not in the large number of noninteracting

fermionic degrees of freedom which act effectively as
baths.28–30 Therefore, we trace over the states of the fermi-
onic sector and we obtain the reduced density matrix �red,
which just describes the charge degrees of freedom. In the
basis defined by the states ���= �N1 , . . . ,NM� �with excess
charge Nr on the island r�, the dynamics of the diagonal and
off-diagonal matrix elements of the reduced density matrix
are uncoupled. Furthermore, the off-diagonal matrix ele-
ments do not contribute to the current. Hence, we need only
to consider the diagonal matrix elements, which are the oc-
cupation probabilities for the respective states and which we
denote by p��t�= 	���red�t����. The probabilities obey the
generalized master equation

d

dt
p�t� = 


−	

t

dt�W�t,t��p�t�� , �4�

where p is the vector of the probabilities p� and the matrix
element W����t , t�� of the kernel W�t , t�� includes all transi-
tions from state �� at time t� to state � at time t.

A. Adiabatic expansion

We now proceed by performing an adiabatic expansion,
i.e., a perturbation expansion in the frequency 
 of the time-
dependent pumping fields Xi���. To describe the adiabatic
pumping regime it is enough to retain terms linear in 
. The
first step consists in performing a Taylor expansion of p�t��
on the right-hand side �r.h.s.� of Eq. �4� around t up to linear
order,

d

dt
p�t� = 


−	

t

dt�W�t,t���p�t� + �t� − t�
d

dt
p�t�� . �5�

This expansion is justified if the period of the pumping fields
is much longer than the characteristic memory time of the
system. Second, we make an adiabatic expansion of the ker-
nels appearing in the generalized master equation as follows:

W�t,t�� → Wt
�i��t − t�� + Wt

�a��t − t�� . �6�

The instantaneous term, Wt
�i��t− t��, is simply obtained by

replacing Xi��� with Xi��= t�. On the other hand, the first
adiabatic correction, Wt

�a��t− t�� is obtained by performing
the Taylor expansion Xi���→Xi�t�+ ��− t� d

d�Xi��� ��=t and re-
taining terms up to first order in the time derivatives. The
index t in Eq. �6� indicates the time with respect to which the
adiabatic expansion has been performed. The adiabatic ex-
pansion for the kernels is valid if the period of the pumping
fields is much longer than the characteristic response times
of the system, i.e., if 
��0 maxr ,kBT�, where r are the
charging-energy gaps of the islands.

Finally, we expand also the probabilities,

p�t� → pt
�i� + pt

�a�. �7�

Notice that by construction pt
�i� are the stationary probabili-

ties for the time-independent problem where all parameters
are frozen at their values at time t. Since all expressions now
depend on the time difference t− t� it is useful to introduce
the Laplace transform F�z�=�−	

t dt�e−z�t−t��F�t− t��. In the fol-
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lowing we make use of the notation Wt
�i/a�=Wt

�i/a��z� �z=0+

=�−	
t dt�Wt

�i/a��t− t�� and �Wt
�i�= �

�zWt
�i��z� �z=0+

.

B. Perturbative expansion in the tunnel coupling

Even after having performed the adiabatic expansion, the
problem cannot be solved exactly due to the presence of the
Coulomb interaction and of the tunnel couplings. Therefore,
in addition to the expansion in the pumping frequency 
, we
perform a perturbative expansion in the tunnel-coupling
strength �0. This limits the range of validity of the method to
the weak tunnel-coupling regime.

The order in the expansion in �0 will be indicated by an
integer superscript. For example, Wt

�a,1� indicates the first
order in �0 of the adiabatic correction of the kernel.

The perturbative expansion for the instantaneous prob-
abilities is straightforward since it corresponds to the time-
independent problem with all parameters frozen at time t.
The instantaneous probabilities pt

�i,0� and pt
�i,1� are determined

from

0 = Wt
�i,1�pt

�i,0�, �8�

0 = Wt
�i,2�pt

�i,0� + Wt
�i,1�pt

�i,1�, �9�

complemented by the normalization conditions eTpt
�i,0�=1

and eTpt
�i,1�=0, where e is the vector with all components

equal to one. The first adiabatic correction to the probabili-
ties obey the equations

d

dt
pt

�i,0� = Wt
�i,1�pt

�a,−1�, �10�

d

dt
pt

�i,1� = Wt
�i,1�pt

�a,0� + Wt
�i,2�pt

�a,−1�

+ Wt
�a,1�pt

�i,0� + �Wt
�i,1� d

dt
pt

�i,1�, �11�

complemented by the normalization conditions eTpt
�a,−1�=0

and eTpt
�a,0�=0. The orders in �0 on the r.h.s. of Eqs. �10� and

�11� have been chosen to match those on the left-hand side.
We notice that the expansion in �0 starts with the order −1.
Although this result might seem surprising at first, it is in
line with our expansion since pt

�a,−1��
 / ��0 maxr ,kBT��
�1.

C. Pumped current and charge

The pumped current through the left lead can be written
as

IL�t� = e

−	

t

dt�eTWL�t,t��p�t�� �12�

with e being the electron charge and WL�t , t��
=�ppWLp�t , t��. The kernel Wrp�t , t�� describes all processes
where the number of electrons entering reservoir r minus the
ones leaving it equals p.

We proceed for the current in the same way as for the
master equation �4� performing an adiabatic expansion in the

frequency 
 and a perturbative expansion in the tunnel cou-
pling �0. Since there is no applied transport voltage, the in-
stantaneous current vanishes. The adiabatic corrections to the
current in zeroth and first order in �0 read

IL
�a,0��t� = eeTWt

L�i,1�pt
�a,−1�, �13�

IL
�a,1��t� = eeT�Wt

L�i,1�pt
�a,0� + Wt

L�i,2�pt
�a,−1�

+ Wt
L�a,1�pt

�i,0� + �Wt
L�i,1�dpt

�i,0�

dt
� . �14�

The lowest-order contribution to the adiabatic current,
given by Eq. �13�, scales with 
 and is independent of �0, in
contrast to the dc current through a system with an applied
transport voltage, which scales with �0. Since 

��0 maxr ,kBT�, the pumped current goes to zero for van-
ishing tunnel coupling as it should. The pumped charge Q
per cycle is simply given by the integral of the pumped cur-
rent over one period T= 2�


 .

D. Diagrammatic rules

1. Rules to calculate the instantaneous kernels

We start with summarizing the diagrammatic rules for the
kernel Wt

�i,n��z�, where n indicates the order of the expansion
in �0. Examples of first-order diagrams for the single-island
system are drawn in Fig. 1.

�1� Draw all topologically different diagrams with n di-
rected tunneling lines connecting pairs of vertices containing
lead-electron operators. Assign a reservoir index r and en-
ergy � to each of these lines. Assign charge states � and the
corresponding energies E��t� to each element of the Keldysh
contour connecting two vertices. Furthermore, draw an ex-
ternal line from the upper leftmost beginning of an island
propagator to the upper rightmost end of an island propaga-
tor that carries the �imaginary� energy −iz.

�2� For each time segment between two adjacent vertices
�independent of whether they are on the same or on opposite
branches of the Keldysh contour� write a resolvent 1

E�t� ,
where E�t� is the difference of left-going minus right-going
energies �including energies of tunneling lines and the exter-
nal line—the positive imaginary part of iz will keep all re-
solvents regularized�.

, rω
, rω

−iz1

−iz1

01

∆1 0

0

01

1 ∆

−iz −iz

+

FIG. 1. Example of diagrams for the single-island system in first
order in the tunnel coupling which are needed to calculate the ker-
nels Wt

�i/a,1��z� and �Wt
�i,1��z�. The additional frequency lines

needed for the adiabatic corrections to the kernels are shown as
dotted lines.

DIAGRAMMATIC REAL-TIME APPROACH TO ADIABATIC… PHYSICAL REVIEW B 79, 235309 �2009�

235309-3



�3� Each vertex containing an island operator cknr
�†� gives

rise to a matrix element 	���cknr
�†� ���, where � ���� is the is-

land state entering �leaving� the vertex with respect to the
Keldysh contour.

�4� The contribution of a tunneling line of reservoir r is
�r

+�t ,�� if the line is going backward with respect to the
closed time path and �r

−�t ,�� if it is going forward with
�r

��t ,��= ��0
r�t� �

exp�����−1 and �=1 / �kBT�.
�5� The overall prefactor is given by �−i��−1�b+c, where b

is the total number of vertices on the backward propagator
and c the number of crossings of tunneling lines.

�6� Integrate over all the energies of the tunneling lines
and sum over the reservoir indices.

2. Rules to calculate the adiabatic kernels

The possible time-dependent parameters are the tunnel-
matrix elements Vr�ti� and the charging-energy gaps r�t�.
The matrix elements Vr�ti� enter in the contractions of tun-
nel vertices as �0

r�ti , tj��Vr�ti�Vr
��tj�. The charging-energy

gaps r�t� enter in the isolated island propagator
exp�−i�ti

tjdt�E��t���.
While for the instantaneous kernels all parameters were

taken at time t, we now perform an expansion around the
same time t and keep all contributions linear in a time de-
rivative of the pumping parameters,

�0
r�ti,tj� � �0

r�t� +
ti − t

2

d�0
r

dt
�t� +

tj − t

2

d�0
r

dt
�t� , �15�

exp�− i

ti

tj

dt�E��t���
� e−iE��t��tj−ti��1 − i

�tj − t�2 − �ti − t�2

2

dE�

dt
�t�� . �16�

The linear factors �ti− t� appearing in these expansions can
be included in the diagrammatic rules by introducing an ad-
ditional external frequency line with the imaginary energy
−izi from the vertex at ti to the rightmost vertex at t, perform-
ing the first derivative with respect to zi and then setting zi
=0+. Similarly, the quadratic terms �ti− t�2 can be included in
the diagrammatic rules by introducing an additional external
frequency line with the imaginary energy −izi from the be-
ginning of an island-propagator line at ti to the rightmost
upper end of an island-propagator line at t, performing the
second derivative with respect to zi and then setting zi=0+.
The external frequency lines are drawn as dotted lines in
Fig. 1.

The rules to compute the contribution to the adiabatic
corrections Wt

�a,n� due to the time dependence of �0
r�t� read:

�7a� Add to all diagrams needed for Wt
�i,n��z� additional

external frequency lines between any vertex ti and the upper
right corner of the diagram and assign to them an �imagi-
nary� energy −izi. Note that an external frequency line be-
tween two right corners of a diagram does not contribute and
can always be omitted.

�7b� Follow rules �1�–�6� taking into account the extra
lines.

�7c� Perform a first derivative with respect to zi and mul-

tiply it by 1
2

d�0
r

dt �t� 1
�0

r�t� . Sum all the contributions obtained in
this way.

�7d� Set all the external frequencies zi and z to 0+.
The contribution to the adiabatic correction Wt

�a,n� due to
the time dependence of the charging energy can be computed
in a similar way:

�8a� In addition to the external frequency lines added ac-
cording to rule �7a�, put one more external frequency line
from the left corner of the diagram with no vertex to the right
corner.

�8b� Follow rules �1�–�6� taking into account the extra
lines.

�8c� Perform a second derivative with respect to zi and
multiply it by − i

2
d�E�−E���

dt �t�, where � ���� is the island state
entering �leaving� the vertex of the external frequency line at
ti with respect to the Keldysh contour. The term

dE�

dt �
dE��

dt � is
omitted if the segment associated with E� �E��� does not be-
long to the diagram. Sum all the contributions obtained in
this way.

�8d� Set the external frequencies zi and z to 0+.
Finally to compute the current, we need the matrix ele-

ments of Wt
r=�ppWt

rp. For each contribution Wt
rp all dia-

grams for which the number of tunneling lines with reservoir
index r running from the upper to the lower propagator mi-
nus the number of those with reservoir index r running in the
opposite direction equals p need to be added.

IV. ADIABATIC PUMPING THROUGH
A SINGLE-ISLAND SYSTEM

In this section, we present the results for a single-island
system consisting of one metallic island with Coulomb inter-
action, tunnel coupled to two noninteracting leads kept at the
same chemical potential. The Coulomb interaction on the
island is described by the charging energy Ech�N ,Nx�t��
=EC�N−Nx�t��2, where Nx�t� denotes the charges externally
induced via the gate voltage VG and N indicates the charge
on the island. The energy scale for the charging energy is
EC= e2

2C with C being the total island capacitance.
At low temperatures only two different charge states con-

tribute to the transport. We indicate these states as �0� and �1�
and their energies as E0 and E1, respectively. The occupation
probabilities for these states are labeled p0 and p1. The
charging-energy gap of the island is defined as the energy
difference �t��E1�t�−E0�t�. An energy sketch of the
single-island system is shown in Fig. 2.

metalliclead L
island

∆(t)

lead R
0

Rα (t)L(t)α 0

FIG. 2. Sketch of the single-island system. The possible pump-
ing parameters are the charging-energy gap  of the island and the
tunnel-coupling strengths �0

r .
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A. Pumped current in zeroth order in �0

To calculate the pumped current in zeroth order in �0 we
need the instantaneous occupation probabilities in zeroth or-
der in �0 and their adiabatic correction in minus first order.
The instantaneous probabilities can be obtained from Eq. �8�
and are simply given by Boltzmann factors,

�pt
�i,0��� =

e−�E�

Z
, �17�

where �= 1
kBT is the inverse temperature, E� is the energy of

the island state �, and Z=��e−�E� is the partition function.
The instantaneous average occupation number of the island
in lowest order in �0 can be calculated from the instanta-
neous probabilities and reads

	n��i,0� = f+�� . �18�

The adiabatic correction to the probabilities can be ob-
tained from Eqs. �10� and �17� and is given by

pt
�a,−1� = −

1

2����
d

dt
pt

�i,0�, �19�

where we used the notation ����=�+���+�−��� and
�����=�r�r

����. Furthermore, we define �0=�0
L+�0

R. Since
this probability vector is proportional to the time derivative
of the instantaneous probabilities pt

�i,0�, it is an eigenvector of
the kernel Wt

�i,1�. To compute the probabilities �17� and �19�,
we need to evaluate only the instantaneous kernels in first
order in �0. The expressions for the matrix elements of Wt

�i,1�

are given in Appendix A.
By inserting the results for the probabilities in Eq. �13�, it

yields for the adiabatically pumped current through the
single-island system in zeroth order �0,

IL
�a,0��t� = − e

�0
L

�0

d

dt
	n��i,0�. �20�

The average occupation number of the island in zeroth order
�0 depends only on the charging-energy gap  and not on
the tunnel-coupling strengths. Therefore, the pumped current
in zeroth order �0 is nonvanishing only if the charging-
energy gap is one of the pumping parameters. The result of
Eq. �20� has a simple interpretation: if the charging-energy
gap is varied in time, the occupation of the island adjusts to
the new situation and therefore electrons need to enter or
leave the island. The fraction of the resulting electrical cur-
rent which flows through barrier r is given by the ratio
�0

r /�0. Therefore, this pumping mechanism can be consid-
ered as peristaltic.

B. Pumped current in first order in �0

We start by giving the expression for the instantaneous
average occupation number of the island in first order in �0
as follows:

	n��i,1� = �0�R�����
d

d
	n��i,0� + �	n��i,0� −

1

2
��R������ .

�21�

The function ���� is defined via ����=�+���+�−��� with
�����= ��d��

��
�−��+i0+

1

e����−1
. To keep the integrals conver-

gent we introduce a high-energy cutoff, which in our case is
provided by the charging-energy scale EC. Then in the limit
of EC�max� ,kBT� we obtain for the real part of the �-
function,

R������ = − 2��ln��EC

2�
� − R��i

��

2�
�� , �22�

where � denotes the digamma function. We identify the first
term in Eq. �21� as the contribution due to the renormaliza-
tion of the charging-energy gap ,

	n��i,ren� = �0R�����
d

d
	n��i,0�, �23�

where the charging-energy gap is renormalized by →
+�0R�����.

The broadening of the spectral function of the island due
to the tunnel coupling to the leads yields a contribution to the
first-order correction of the island occupation number, which
can be written as the sum of the contributions of the indi-
vidual barriers, 	n��i,broad�= 	n��i,broad,L�+ 	n��i,broad,R�. The sec-
ond term of Eq. �21� can be identified as the contribution due
to broadening,

	n��i,broad� = �	n��i,0� −
1

2
��0�R����� , �24�

where � denotes the derivative with respect to the charging-
energy gap . The amplitude of the broadening depends on
the occupation of the island: if the island is unoccupied, the
prefactor is − 1

2 ; if the island is occupied by a single electron,
the coefficient is 1

2 .
In order to compute the first-order correction to the

pumped current, we need, besides pt
�i,1�, also pt

�a,0�, which can
be computed by means of Eq. �11� and reads

�pt
�a,0��1 = − �pt

�a,0��0 =
1

�2��
�0

2�
R���������

d

dt
�f+���

−
1

���
d

dt
� �0

2�
R������f+��� . �25�

The expressions of the matrix elements of kernels Wt
�a,1� and

Wt
�i,2�, which are needed to compute the probabilities �25�,

can be found in Appendix A. Finally, the pumped current in
first order in �0 can be written as

IL
�a,1��t� = − e� d

dt
	n��i,broad,L� +

�0
L

�0

d

dt
	n��i,ren�� . �26�

The first term is related to the time variation of the correction
of the average occupation number due to broadening of the
resonance at  induced by tunnel coupling the island to the
left lead. It is, therefore, associated with tunneling processes
where electrons tunnel through the left barrier. Equation �26�
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shows that this first contribution to the current consists of the
total time derivative of the correction of the average occupa-
tion number due to tunnel coupling to the left lead and thus
the integral over a whole pumping period yields zero. The
second contribution to the pumped current in first order in �0
is due to the renormalization of the charging-energy gap and
has the same form as the zeroth-order contribution to the
current �Eq. �20�� with renormalized parameters. As the
renormalized average occupation number of the island
	n��i,ren� depends on the charging-energy gap as well as on the
tunnel-coupling strengths �0

r , we obtain a nonvanishing
pumped charge for any choice of pumping parameters. Par-
ticularly intriguing is the case of pumping with the two bar-
riers, since in this case the current IL

�a,0��t� vanishes and the
first nonvanishing contribution to the current is due to the
renormalization of the charging-energy gap, and therefore it
is an effect purely due to quantum fluctuations and interac-
tion.

C. Pumped charge in the weak-pumping limit

Now we calculate the pumped charge per cycle in the
weak-pumping limit. We write the pumping parameters as

Xi�t�= X̄i+�Xi�t�, where X̄i is the time average and �Xi�t� is
the oscillating part. The weak-pumping limit corresponds to
computing the current in bilinear order in the time-varying
parts of the parameters.

1. Pumping with the charging-energy gap
and one tunnel-coupling strength

We start by considering one tunnel-coupling strength �0
L

and the charging-energy gap  as pumping parameters. Ex-
panding the current IL

�a��t� up to bilinear order in the time
variation of the pumping parameters and integrating over one
cycle, we obtain for the pumped charge

Q�0
L,

�a� = − e
�̄0

R

�̄0
2 ��1

d

d�̄
�	n̄��i,0� + �̄0�R���̄��

d

d�̄
	n̄��i,0�� ,

�27�

where �1=�0
T��0

L d�
dt dt is the area of the pumping cycle in

parameter space, 	n̄��i,0� is the instantaneous average occupa-
tion number, where the charging-energy gap has been re-

placed with its time average ̄, and �̄0= �̄0
L+ �̄0

R.
The first contribution to the pumped charge arises from

the current in zeroth order in �0 and the second from the
first-order correction of the current due to the renormaliza-
tion of the charging-energy gap as discussed in Sec. IV B.
Hence, the first term is the dominant one.

In Fig. 3 the pumped charge is plotted as a function of the
time average of the charging-energy gap for different values
of the high-energy cutoff. The pumped charge is symmetric
around zero and has its maximum there. This peak is associ-
ated with transitions between charge states where the island
is unoccupied or occupied by a single electron. The pumped
charge vanishes for charging energies much bigger than the

temperature ��̄��kBT� without changing its sign. The over-
all sign of the pumped charge is determined by the traversal

direction of the pumping cycle in parameter space. In Fig. 3
we can clearly see that the maximum of the pumped charge
decreases for increasing high-energy cutoff due to the cor-
rection introduced by the renormalization of the charging-
energy gap.

2. Pumping with the tunnel-coupling strengths

When we choose both tunnel-coupling strengths �0
L and

�0
R as pumping parameters the contribution in zeroth order in

�0 vanishes, as already mentioned. We therefore obtain for
the pumped charge in the weak-pumping limit only the con-
tribution due to the renormalization of the charging-energy
gap,

Q�0
L,�0

R
�a� = e

�2

�̄0
2 �̄0R���̄��

d

d̄
	n̄��i,0�, �28�

where �2=�0
T��0

R d��0
L

dt dt is again the area of the pumping
cycle in parameter space. The pumped charge as a function
of the time-averaged charging-energy gap is plotted in Fig. 4.
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FIG. 3. �Color online� Pumped charge through the single-island
system up to first order in �0 in units of e��1�̄0

R / �̄0
2 as a function of

the time average of the charging-energy gap for different values of
EC. The pumping parameters are �0
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It is zero for ̄=0 and antisymmetric around zero. For charg-

ing energies much larger than the temperature ��̄��kBT� the
pumped charge vanishes. Increasing the high-energy cutoff
EC, the amplitude of the pumped charge is increased. Finally,
we emphasize that by adiabatic pumping with the two
tunnel-coupling strengths we can explore the effects of
renormalization of the charging-energy gap . The pumping
mechanism is peristaltic but it occurs via renormalization
effects. The sign change of the pumped charge around the
resonance clearly distinguishes this mechanism from lowest-
order pumping with one barrier and gate voltage. We remark
that such a sign change has been experimentally observed in
charge pumping through carbon nanotubes with the help of
surface acoustic waves.24 There, this feature has been under-
stood as adiabatic pumping through an effective few-level
double quantum dot with changing level positions.

V. ADIABATIC PUMPING THROUGH
A DOUBLE-ISLAND SYSTEM

In this section we consider pumping with the two
charging-energy gaps in a system consisting of two tunnel-
coupled metallic islands with no applied bias voltage. This
system corresponds to the single-electron pump of Pothier et
al.20 The left and right islands are labeled by L and R, re-
spectively. Notice that we will use the same labels for the left
and right leads. Whenever confusion could arise, we specify
whether we refer to an island or a lead. The charging energy
of the system reads

Ech�NL,NR,Nx,L�t�,Nx,R�t��

= ECL�NL − Nx,L�2 + ECR�NR − Nx,R�2

+ ECM�NL − Nx,L��NR − Nx,R� , �29�

where NL�R� is the total charge on the left �right� island and
Nx,L�R� the gate-induced charge on the left �right� island. The
prefactors ECL, ECR, and ECM can be easily computed as a
function of the junction and gate capacitances. At low tem-
perature, the Hilbert space for the double-island system can
be truncated to the three states �0,0�, �1,0�, and �0,1�, cor-
responding to no excess charge in the system, one excess
charge on the left island and none on the right one, and one
excess charge on the right island and none on the left one,
respectively. The corresponding energies are E0,0�t�, E1,0�t�,
and E0,1�t�. We define the two time-dependent charging-
energy gaps L�t��E1,0�t�−E0,0�t� and R�t��E0,1�t�
−E0,0�t� of the islands and the abbreviation M�t��R�t�
−L�t�. The occupation probabilities for these charge states
are p0, pL, and pR and are collected in the probability vector
p= �p0 , pL , pR�T. A sketch of the double-island system is
shown in Fig. 5.

In comparison to the single-island system, the tunneling
events in the double-island system include additional tunnel-
ing between the two islands. We define the direction of these
tunneling lines to correspond to an electron tunneling from
the right to the left island. Since no transport voltage is ap-
plied the pumped current vanishes in instantaneous order and
we need to compute the first adiabatic correction. As in this

system the current in zeroth order in the tunnel-coupling
strength is the dominant term, we restrict ourselves to this
contribution.

A. Pumped current in zeroth-order in �0

To compute the pumped current in zeroth order in �0 we
need the probabilities pt

�a,−1�, determined by Eq. �10�, to-
gether with Eq. �8�. For this purpose, only the instantaneous
kernels in first order in �0 are necessary. Examples of dia-
grams contributing to the matrix elements of the kernel Wt

�i,1�

for the double-island system can be found in Appendix B.
Following this procedure we find for the instantaneous occu-
pation probabilities

pt
�i,0� =

1

e−�L + e−�R + 1� 1

e−�L

e−�R
� . �30�

Making use of the notation �r
�=�r

��s� and �r=�r
++�r

− with
r� L,R,M� as well as N=�L�M

− +�L
+�M

+ +�L�R
− +�L

−�R
+

+�M�R
+ +�M

+ �R
− for the denominator, the adiabatic probabili-

ties can be written as

pt
�a,−1� =

1

2�N� 0 �M + �R
− �M + �L

−

�R + �M
− 0 �R + �L

+

�L + �M
+ �L + �R

+ 0
� d

dt
pt

�i,0�.

�31�

By substituting these results in Eq. �13� we obtain the
adiabatically pumped current in the left lead in zeroth order
in �0,

IL
�a,0��t� = e�gR

d

dt
�pt

�i,0��R + gL
d

dt
�pt

�i,0��L� , �32�

where the functions gL and gR are defined by

gR = −
�L�M

− + �L
+�M

+

N
, �33a�

gL = −
�L�M

− + �L
+�M

+ + �L�R
− + �L

−�R
+

N
. �33b�

The current �Eq. �32�� depends on the time derivative of the
occupation probabilities of both islands. The current in the

metallic

(t)

metallic
island L island R

lead Rlead L

∆L(t)
∆R

(t)αM
0 (t)αR

0
L
0α (t)

FIG. 5. Sketch of the double-island system. It consists of two
metallic islands tunnel coupled in series to noninteracting leads
which are kept at the same chemical potential. We consider as
pumping parameters the two charging-energy gaps r.
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right lead can be obtained by exchanging L and R in Eq.
�32�; in doing so we have to replace also �M

� with �M
�.

B. Pumped charge

To compute the pumped charge per cycle we simply need
to integrate the current IL

�a,0��t�, given in Eq. �32�, over one
period. Using simple mathematical manipulations, the
pumped charge per period can be cast in the form

QL,R
= e


0

T

dt �
j=R,L�

dDL

d j

d j

dt
, �34�

where the emissivity for the left lead is given by

dDL

d j
= gR

d

d j
�pt

�i,0��R + gL
d

d j
�pt

�i,0��L. �35�

Following Ref. 1 the pumped charge per period can be writ-
ten as an integral over the area A spanned by the cycle in
parameter space and reads

QL,R
= e


A

dRdL� �

�R

dDL

dL
−

�

�L

dDL

dR
� . �36�

We now consider the weak-pumping regime and we write the
pumping parameters, here the charging-energy gaps, as their
mean values plus a small time-dependent variation around it,

i.e., r�t�= ̄r+�r�t�.
Equation �36� in the weak-pumping limit yields for the

zeroth-order contribution to the pumped charge

QL,R
= e�3 �

j=R,L�
� � ḡj

�̄R

�

�̄L

�pt
�i,0�� j −

� ḡj

�̄L

�

�̄R

�pt
�i,0�� j� ,

�37�

where �3=�0
T�R

d�L

dt dt is the area enclosed by the pumping
cycle in parameter space. In the functions ḡj and the instan-
taneous occupation probabilities �pt

�i,0�� j the charging-energy

gaps have been replaced with their time averages ̄ j.
A density plot of the pumped charge as a function of the

time averages of the pumping parameters ̄L and ̄R is
shown in Fig. 6. It consists in a peak with its maximum in
the origin �for symmetrically chosen tunnel couplings �0

L

=�0
R=�0

M�. This can be seen more clearly in Fig. 7 where we

show a cross section of the peak along the line with ̄L

=−̄R �solid line� and along the line with ̄L= ̄R �dashed
line�. Notice that the peak is symmetric for the case of anti-
symmetrically chosen charging-energy gaps, while the sym-
metry is absent for symmetrically chosen charging-energy
gaps. Going around the origin of the plot in Fig. 6 with

constant radius R=�̄L
2 + ̄R

2 , the pumped charge exhibits a
maximum when the polar angle takes the values �

4 and 5
4�,

which correspond to ̄L= ̄R.
So far, we discussed the pumped charge in the weak-

pumping limit. Now, we want to describe the transition from
weak to strong pumping. Therefore, we increase the variation
of the pumping parameters � j�t� and, hence, the area en-

closed in the parameter space. The pumped charge over a
large pumping cycle can be obtained by integrating the
weak-pumped charge of Eq. �37� over the area of the cycle.
For the sake of definiteness, we choose as a pumping cycle a
square loop around the origin, as shown in Fig. 6. The result
for the charge as a function of the side of the loop, �A,
obtained in this way is plotted in Fig. 8. In this figure we see
that we obtain charge e if the size of the cycle is larger than
kBT. This agrees with the results of the experiment of Pothier
et al.20 where charge quantization was measured for strong
adiabatic pumping. Finally, we wish to stress that by means
of our technique we are able to describe the transition from
weak to strong pumping, recovering charge quantization for

strong pumping cycles encircling the degeneracy point ̄L

= ̄R=0.

FIG. 6. �Color online� Pumped charge through the double-island
system in the weak-pumping limit in zeroth order in �0 in units of
e�2�3 as a function of the time averages of the pumping parameters

̄L and ̄R in units of the inverse temperature �−1=kBT. The white
square marks the area in parameter space over which we integrate
to obtain the pumped charge in the strong-pumping limit.
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FIG. 7. Pumped charge through the double-island system in the
weak-pumping limit in zeroth order in �0 in units of e�2�3 for L

equal to R �dashed line� and L equal to −R �solid line�.
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VI. CONCLUSIONS

We developed a diagrammatic real-time approach to adia-
batic pumping through a system of tunnel-coupled metallic
islands, performing a systematic perturbative expansion in
powers of the tunnel-coupling strengths. This method al-
lowed us to identify the different physical processes which
contribute to the pumped charge. We first applied our formal-
ism to a single-island system consisting of one metallic is-
land with Coulomb interaction tunnel coupled to two nonin-
teracting leads. We computed the pumped charge up to first
order in the tunnel-coupling strength, finding that the contri-
bution in first order is due to the renormalization of the
charging-energy gap. For the case of pumping with the two
tunnel-coupling strengths, this term becomes the dominant
one. We emphasize that the single-island system works like a
peristaltic pump if one tunnel-coupling strength and the
charging-energy gap are the pumping parameters. For pump-
ing with both tunnel-coupling strengths the peristalting
mechanism occurs by means of charging-energy gap renor-
malization, therefore enabling experimental access to renor-
malization effects.

Furthermore, we considered pumping with the charging-
energy gaps in a system consisting of two tunnel-coupled
metallic islands. We calculated the pumped charge through

this double-island system and studied the issue of pumped-
charge quantization. First, we investigated the pumped
charge in the weak-pumping limit. For example, we found
that in experiments a symmetric choice of the average of the
charging-energy gaps should be preferred to maximize the
pumped charge. By integrating the weak-pumped charge we
obtained the pumped charge over a larger pumping cycle.
Therefore, we were able to describe the transition from weak
to strong pumping. In the strong-pumping limit we found the
charge to be quantized. This is consistent with the results
obtained by Pothier et al.20 for strong pumping with the
single-electron pump.
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APPENDIX A: EXAMPLES OF DIAGRAMS
FOR THE SINGLE-ISLAND SYSTEM

In this appendix, we give the results for the matrix ele-
ments �Wt�i,j for the single-island system. These matrices are
needed to compute the occupation probabilities of the metal-
lic island.

We start with calculating the matrix elements �Wt
�i,1��i,j of

the instantaneous kernels in first order in �0. The correspond-
ing diagrams are shown in Fig. 9, where the additional dotted
frequency lines must not be taken into account. As an ex-
ample, we compute the two diagrams contributing to the ma-
trix element �Wt

�i,1��0,1, shown in Fig. 9�b�. The sum of the
two diagrams reads

�Wt
�i,1��0,1 = − 2I��

r

 d�

�r
−���

 − � + i0+
� = 2��−�� .

�A1�

The instantaneous kernel in first order in �0 reads

, rω
, rω

, rω , rω , rω
, rω

, rω, rω
1

a

−iz −iz
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−iz

b

dc

10

0 1

1

10

0

−iz −iz

+

∆
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FIG. 9. �a� �Wt
�i/a,1��0,0, �b� �Wt

�i/a,1��0,1, �c� �Wt
�i/a,1��1,0, and �d� �Wt

�i/a,1��1,1. Diagrams contributing to the instantaneous/adiabatic matrix
elements in first order in �0. The dotted frequency lines are only needed for the adiabatic corrections �Wt

�a,1��i,j.

0 2 4 6 8 10
β v/A

0

0.2

0.4

0.6

0.8

1

Q
∆ L

,∆
R

/e

FIG. 8. Pumped charge per cycle as a function of the side of the
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Wt
�i,1� = 2��− �+�� �−��

�+�� − �−��
� .

For the derivative of the instantaneous kernel in first order in
�0 we get

�Wt
�i,1� = �0�R������ 1 − 1

− 1 1
� .

To compute the adiabatic correction we need to introduce
additional external frequency lines according to rules �7a�
and �8a�, which are drawn as dotted lines in Fig. 9. The
evaluation of these diagrams leads us to the adiabatic correc-
tion to kernel in first order in �0,

Wt
�a,1� =

d

dt
��0

2
�R������� 1 − 1

− 1 1
� .

Finally, we calculate the second-order contribution in �0 to
the matrix elements of the instantaneous kernel. As an ex-
ample, we show all diagrams contributing to the matrix ele-
ment �Wt

�i,2��0,1 in Fig. 10. We have to sum over all indices
r ,r� and to integrate over all frequencies � ,��. Performing

the limit z=0+ and using Cauchy’s principal value, we get

�Wt
�i,2��0,1 = − ��0����R����� + 2��0R�������−�� .

For the matrix elements of the instantaneous kernel in second
order in �0 we find

Wt
�i,2� = ��0����R������ 1 − 1

− 1 1
�

+ 2��0R�������− �+�� �−��
�+�� − �−��

� .

APPENDIX B: EXAMPLES OF DIAGRAMS
FOR THE DOUBLE-ISLAND SYSTEM

In this appendix we give the results for the matrix ele-
ments �Wt

�i,1��i,j of the instantaneous kernel in first order in
�0 for the double-island system. Examples of the corre-
sponding diagrams are shown in Fig. 11. Their evaluation is
similar to the one for the instantaneous matrix elements in
first order in �0 for the single-island system �see Eq. �A1��,
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FIG. 10. Diagrams contributing to the instantaneous matrix element �Wt
�i,2��0,1 in second order in �0.
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�Wt
�i,1��10,01 = − 2I�
 d�

�M
− ���

M − � + i0+
� = 2��M

− �M� .

Proceeding in the same way for the other matrix elements
and using the notation �r

�=�r
��s� with s= L,R,M�, we

obtain for the matrix for the instantaneous kernel in first
order in �0,

Wt
�i,1� = 2��− �L

+ − �R
+ �L

− �R
−

�L
+ − �M

+ − �L
− �M

−

�R
+ �M

+ − �M
− − �R

− � .

1 P. W. Brouwer, Phys. Rev. B 58, R10135 �1998�.
2 F. Zhou, B. Spivak, and B. Altshuler, Phys. Rev. Lett. 82, 608

�1999�.
3 M. Moskalets and M. Büttiker, Phys. Rev. B 64, 201305�R�

�2001�.
4 Y. Makhlin and A. D. Mirlin, Phys. Rev. Lett. 87, 276803

�2001�.
5 M. Moskalets and M. Büttiker, Phys. Rev. B 66, 035306 �2002�.
6 O. Entin-Wohlman, A. Aharony, and Y. Levinson, Phys. Rev. B

65, 195411 �2002�.
7 M. Büttiker, H. Thomas, and A. Prêtre, Z. Phys. B: Condens.

Matter 94, 133 �1994�.
8 I. L. Aleiner and A. V. Andreev, Phys. Rev. Lett. 81, 1286

�1998�.
9 R. Citro, N. Andrei, and Q. Niu, Phys. Rev. B 68, 165312

�2003�.
10 T. Aono, Phys. Rev. Lett. 93, 116601 �2004�.
11 P. W. Brouwer, A. Lamacraft, and K. Flensberg, Phys. Rev. B

72, 075316 �2005�.
12 E. Cota, R. Aguado, and G. Platero, Phys. Rev. Lett. 94, 107202

�2005�; 94, 229901�E� �2005�.
13 J. Splettstoesser, M. Governale, J. König, and R. Fazio, Phys.

Rev. Lett. 95, 246803 �2005�.
14 E. Sela and Y. Oreg, Phys. Rev. Lett. 96, 166802 �2006�.
15 J. Splettstoesser, M. Governale, J. König, and R. Fazio, Phys.

Rev. B 74, 085305 �2006�.
16 D. Fioretto and A. Silva, Phys. Rev. Lett. 100, 236803 �2008�.
17 L. Arrachea, A. Levy Yeyati, and A. Martin-Rodero, Phys. Rev.

B 77, 165326 �2008�.
18 J. Splettstoesser, M. Governale, and J. König, Phys. Rev. B 77,

195320 �2008�.
19 L. J. Geerligs, S. M. Verbrugh, P. Hadley, J. E. Mooij, H.

Pothier, P. Lafarge, C. Urbina, D. Estève, and M. H. Devoret, Z.
Phys. B: Condens. Matter 85, 349 �1991�.

20 H. Pothier, P. Lafarge, C. Urbina, D. Estève, and M. H. Devoret,
EPL 17, 249 �1992�.

21 J. M. Martinis, M. Nahum, and H. D. Jensen, Phys. Rev. Lett.
72, 904 �1994�; M. W. Keller, J. M. Martinis, N. M. Zimmer-
man, and A. H. Steinbach, Appl. Phys. Lett. 69, 1804 �1996�; R.
L. Kautz, M. W. Keller, and J. M. Martinis, Phys. Rev. B 60,
8199 �1999�.

22 A. Fuhrer, C. Fasth, and L. Samuelson, Appl. Phys. Lett. 91,
052109 �2007�.

23 N. E. Fletcher, J. Ebbecke, T. J. B. M. Janssen, F. J. Ahlers, M.
Pepper, H. E. Beere, and D. A. Ritchie, Phys. Rev. B 68, 245310
�2003�; J. Ebbecke, N. E. Fletcher, T. J. B. M. Janssen, F. J.
Ahlers, M. Pepper, H. E. Beere, and D. A. Ritchie, Appl. Phys.
Lett. 84, 4319 �2004�.

24 M. R. Buitelaar, V. Kashcheyevs, P. J. Leek, V. I. Talyanskii, C.
G. Smith, D. Anderson, G. A. C. Jones, J. Wei, and D. H. Cob-
den, Phys. Rev. Lett. 101, 126803 �2008�.

25 B. Kaestner, V. Kashcheyevs, G. Hein, K. Pierz, U. Siegner, and
H. W. Schumacher, Appl. Phys. Lett. 92, 192106 �2008�.

26 S. K. Watson, R. M. Potok, C. M. Marcus, and V. Umansky,
Phys. Rev. Lett. 91, 258301 �2003�.

27 H. Schoeller, in Mesoscopic Electron Transport, edited by L. L.
Sohn, L. P. Kouwenhoven, and G. Schön �Kluwer Academic,
Dordrecht, 1997�.

28 J. König, H. Schoeller, and G. Schön, Phys. Rev. Lett. 76, 1715
�1996�.

29 J. König, J. Schmid, H. Schoeller, and G. Schön, Phys. Rev. B
54, 16820 �1996�.

30 J. König, Quantum Fluctuations in the Single-Electron Transis-
tor �Shaker Verlag, Aachen, 1999�.

DIAGRAMMATIC REAL-TIME APPROACH TO ADIABATIC… PHYSICAL REVIEW B 79, 235309 �2009�

235309-11


